AD-A233 989

A Software Package for Unconstrained Optimization
Using Tensor Methods
Technical Report
Ta-Tung Chow, Elizabeth Eskow, and Robert B. Schnabcl

December 1990

U.S. Army Research Office

Grant Number DAAL (03-88-K-0086

Department of Computer Science
Campus Box 430
University of Colorado,
Boulder, Colerado, 80309 USA

Approved for Public Release;
Distribution Unlimited

Technical Report Number
CU-CS-491-90

Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the author and do not necessarily reflect the views of the
National Science Foundation.

The views, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

A Software Package for Unconstrained Optimization using Tensor Methods

Abstract

This paper describes a software package for finding the unconstrained minimizer of a nonlinecar
function of n variab'cs. The package is iniended for problems where n is not oo large, say n < 100, so
that the cost of storing one n x n matrix, and factoring it at each iteration, is acceptable. The software
allows the user .0 choose between a recently developed "tensor method” for unconstrained optimization,
and an analogous standard method based upon a quadratic model. The tensor method bases each iteration
upon a specially constructed fourth order model of the objective function that is not significantly more
expensive to form, store, or solve than the standard quadratic model. In our experience, the tensor method
requires significantly fewer iterations and function evaluations to solve most unconstrained optimization
problems than standard methods based upon quadratic models, and also solves a somewhat wider range of

problems. For these reasons, it may be a useful addition to numerical software libraries.

.1-

1. Introduction

This paper describes a software package that implements the tensor method for unconstrained
optimization introduced in Schnabel and Chow [1989]. The package solves the unconstrained minimiza-

tion problem

min f(x):R"—>R ,

xeR”

utilizing either analytic or finite difference gradients and Hessian matrices at each iteration. The software
allows the user to choose betwecen a tensor method and an analogous standard method based upon a qua-
dratic model. It is intended for problems where the number of variables n is not too large, say n <100, so
that the cost of storing one nxn matrix and factoring it at each iteration is acceptable. It can be applicd to
problems where n=1, but softwarc designed specifically for one variable problems is likely to be prefer-

able.

The tensor method employed in the software bases each iteration upon a specially constructed
fourth order model of the objective function. This model interpolates the function value and gradient from
the previous iterate, as well as the current function value, gradient, and Hessian matrix. The model is con-
structed so that the storage it requires, and the arithmetic operations per itcration required to form and
solve it, arc not significantly higher than for a standard second derivative method based upon a quadratic
model. In our experience, the tensor method requires significantly fewer iterations and function cvalua-
tions to solve most unconstrained optimization problems than standard unconstraincd optimization
methods based upon quadratic models, and also solves a somewhat wider range of problems. For these

io.30nz, it may be a useful addition to numerical software libraries.

The next scction gives a very brief overview of the tensor method; for further information, sce
Schnabel and Chow [1989]. Scction 3 gives an overview of the input, output, and important options pro-
vided by the software. In Section 4 we describe the user interface to the package, which includes both a
simplificd (default) and a longer calling sequence. Section 5 describes in detail all the possible input and

output parameters for the package, and their effects. Scction 6 mentions a few implementation details. In

2.

Seciicn 7 we summarize our experience using this package, which can be found in more detail in Chow

(1989].

2. Brief Overview of Tensor Method

Each iteration of the tensor method is based upon a fourth order model of the objective function

f (x) around the current iterate x. that has the form
m(x.+d) = f () +Vfx) d + 4dT V2 (x.)d + %—Tcd:‘ + ?%—Vcd“ . @.1)

The tensor terms T, and V. are three and four dimensional objects, respectively, that are chosen so that
the model interpolates function and gradient information from previous iterates. Schnabel and Chow
[1989] allowed the model to interpolate function and gradient values from more than one past iterate, but
their tests showed that there was no advantage to this in comparison to a tensor method that interpolates
only the function value and gradient from the most recent past iterate. In addition, the tensor method is
significantly simpler when only information from one past iterate is used. For these reasons, this software
package uses the version of the tensor method that only interpolates information from the most recent

previous iterate.

Schnabel and Chow [1989] derive a proccedure for determining the smallest 7. and V., in the Fro-
benius nom, that allow (2.1) to interpolate previous function and gradient values. In the case when only
onc past iterate is used, they show that these T, and V., are rank-two and rank-one tensors, respectively.

In particular, the tensor modcl has the form
mx+d) = f () + Vf ()T d + dTVf (xo)d + (60 P0Tdo) + sldey 22)
whoio g is the step from x, to the previous iterate x,, and b.e R” and ae R arc uniquely determined by

tion sJV2f (x.)s.) + O(n) multiplications and additions, which is very small in comparison to the basic

O (n?) per iteration cost of the standard method. The additional storage required is just a few n-veclors,

-3-

for o., sc, and some intermediate quantitics, which is very small compared to the n%2 storage for

VI (xe)-

Near a minimizer, the step taken by the tensor method is to the minimizer of (2.2). Schnabel ana
Chow [1989] show that the problemn of minimizing the fourth order model (2.2) can be reduced to the
problem of minimizing a fourth order polynomial in one variable, plus the minimization of a quadratic
function in n—1 variables. The cost of this process is only 4n% + O (n) multiplications and additions more

than the basic O (n3) of minimizing a quadratic model.

As in all noniinear optimization methods, it is also necessary to incorporate a procedure that allows
the method to converge from starting points that arc far from the solution. Chow [1989] implemented
both a line search and a trust region methods for the tensor method. In his tests, the tensor method with a
trust region strategy was about 15% more efficient (in terms of iterations or function and derivative
evaluations) than the tensor method with a line search strategy, while the difference in robustness
between the two methods was indistinguishable. The line search tensor method was still about 25-35%
more efficient than either a standard line search or trust region method based upon the quadratic model.
In addition, the line search tensor method is much simpler to implement and to understand than the trust
rcgion tensor method, and is appreciably faster on small, inexpensive problems where the complexity of

the code becomes the dominant cost. For these reasons, this software uses a line search method.

In the line scarch tensor method, if the tensor model has @ minimizer and it is in a descent direction
from x., then we scarch along the direction to the minimizer, using the backtracking line scarch algorithm
A6.3.1 from Dennis and Schnabel [1983]. This linc scarch starts with steplength one, and if the candidate

point ¢, docs not satisfy the condition
f () £ f)+1079VF ()T (xexe) (2.3)

it reduces this st~pl~nath by some factor between 0.1 and 0.5, and continucs to do this until the first time
that the candidate point satisfies (2.3). If we cannot usc the tensor model for the reasons mentioned

above, or we arc at the first itcration and there is no previous iterate, we base the step upon the standard

quadratic model. We use the same line search, and calculate the search dircction using the modified
Cholesky factorization of Schnabel and Eskow [1990]. The search direction is
~(V3f (x)+ ID | 11)"'Vf (x.), where D is the diagonal matrix added to the Hessian in the modified

Cholesky aecomposition. which results in D = 0 if V2f (x,_) is safely positive definite.

When we can use the tensor model to find a potential next iterate, it turns out that we can find the
scarch direction based upon the quadratic model at little additional cost. For this reason, we always also
calculate the potential next iterate based upon the quadratic model, and then choose the point with the
lower function value as our next iterate. This strategy generally only costs 1 or 2 additional function
cvaluations (and no extra derivative cvaluations) per iteration, and has been found to appreciably improve

the efficiency of the algorithm.

A high level description of the tensor method is contained in Algorithm 2.1.

Algorithm 2.1 -- An Iteration of the Tensor Method Algorithm

Given current iterate x., f (x), previcus iterate x, , f (x,), Vf (x,):

—

. Calculate Vf (x.) and decide whether to stop. If not:

2. Calculate V2f (x.).

3. Sct s = x.—x,, and calculate b, and « in the tensor model (2.2) so the the tensor model interpolates
f(xp,)and Vf (xp).

4. Calculate the the minimizer of the tensor model; if it has one, and the minimizer is in a descent dircc-
tion dr from x., then use the line search to calculate a potential acceptable next iterale x,7 =
X +X'rd7‘.

5. Calculate the scarch direction d,y based upon the quadratic model, as described above (dyy =
~(V2f (x)+ |D | 1) 'Vf (x.), D 20), and usc the line scarch to calculate a potential acceptable
next iterate x4y = xc+Ay dy .

6. 1l (the tensor line search was conducted) and (f (x47)Sf (x4v))

then sct x=x,7
clsc scl x,=x,y.

7. Sclx, =X, X=X,

3. Overview of the Software Package

The required input to the software is the number of variables n (N), a subroultine to evaluate the
function f (x) and its name (FCN), an initial approximation xg to the solution x« (X), and the row dimen-
sion of the matrix in the users program that will contain the Hessian matri;: “NR). The user may also pro-
vide subroutines to evaluate Vf (x) and V2f (x), but these subroutines arc optional. If they are not pro-
vided, the gradient and Hessian are approximated by finite differcnces. If subroutines to calculate ana-
lytic derivatives are provided, they are checked at the start of the algorithm against a finite diffcrence
approximation to detect possible coding errors, unless the user chooscs to disable this option (sce

GRDFLG, HESFLG, Scc. S).

Upon completion, the software produces its final iterate x; (XPLS), the valuc of the function f (xr)
(FPLS), the gradient g (xr) (GPLS), the Hessian H (x;) (H), and a flag specifying under which stopping
condition the algorithm was terminated (MSG). The stopping criteria used in this software are the same
as in the UNCMIN package of Schnabel, Koontz and Weiss [1985]. Informally, they are: (1) V£ (x,)=0;
(2) x4=x.; (3) the package could not satisfy (2.3) at the last iteration; (4) the iteration limit was exceeded;
and (5) divergence is suspected. If any of these conditions is satisfied, the algorithm terminates. In our
experience, when the code stops due to Vf (x,)=0, it is almost always ncar a local minimizer. When it
stops because x.,=x. it is usually necar a solution; this tolerance should be sct quite small, however, since
optimization algorithms sometimes take very small steps while still far from the solution. When the algo-
rithm stops because the last iteration could not satisfy (2.2), it is often near a solution and cannot achicve
further accuracy due to finitc precision arithmetic; this can be assessed by checking the size of the gra-
dicnt. The divergence test is meant to detect functions that are unbounded below; a very large maximum
step size is imposcd in the line scarch, and if five consecutive steps of this size are taken, divergence is
suspected. A more precise definition of these criteria and recommended values for the applicable toler-

ances (GRADTL, STEPTL, ITNLIM, STEPMX) arc given in Scc. 5.

The user has the option to choose between the tensor miciiiwd and a standard, quadratic model based
mcthod. In our experience, the tensor method usually requires fewer iterations and function and derivative
evaluations than the standard method, but this may vary depending upon the problem. The choice is
bascd upon the input parameter METHOD; the default choice is the tensor method. As previously men-

tioned, for both the tensor and standard methods, a line search strategy is used.

The software can perform scaling of the variable space. If the user inputs a typical magnitude &ypx;
of cach component of x;, then the performance of the package is equivalent to what would result from
redefining the independent variable x in the user’s function with

1/typx
Xscaled = . T X
- Utypx,
and then running the package without scaling. In our expericnce, scaling is often beneficial when dif-
fcrent components of x are expected to have widely differing magnitudes, i.c. differing by several orders
of magnitude, and may sometimes be necessary in order for the software to successfully solve such prob-

lems. The default is no scaling, i.e. cach rypx; = 1. Scaling is controlled by the parameter TYPX.

The user can have the software print out information at cach iteration, print out only the initial
itcrate and the final result, or not print out anything. When MSG =0, the software will not print out any-
thing; this is often useful when the software is imbedded in other software. When MSG =1 (the default),
the software will print out the initial iterate xo, f (xo), and Vf (xg), the final itcrate xg, f(xr), and
\%4 (x), the reason the algorithm was terminated, and the number of itcrations taken. When MSG =2, the

softwarc prints out this information and in addition, the values of x., f (xc), and Vf (x.) at cach iteration.

The user can input an cstimate of the number of accurate digits in the objective function f (x),
using the parameter NDIGIT. It is important to provide this information whenever the number of accu-
rate digits in f (x) is expected to be significantly fewer than the full double precision used by this pack-

age. This may occur, for cxample, when £ (x) is itself the result of an iterative procedure which retumns an

-]

answer where only some number of the leading digits are accurate, or if the routine for f (x) is writlen in
single precision. It is particularly important to supply this information viicn the function evaluation docs
not have (nearly) full double precision accuracy and finite difference derivatives, either gradients or Hes-

sians, are being used.

4. Calling the Software Package

There arc two ways to call the package. If the user wishes to override the default values of any
input parameters, or to supply routines to evaluate the gradient or Hessian, then the following sequence is
used :

CALL DFAULT (N ,TYPX FSCALE ,GRADTL STEPTL JTNLIM STEPMX IPR METHOD,
GRDFLG HESFLG NDIGIT MSG)
{code to override specific default parameters goes here}
CALL TENSOR(NR N X .FCN ,GRD HSN TYPX FSCALE GRADTL STEPTL ITNLIM STEPMX,
IPR METHOD ,GRDFLG HESFLG NDIGIT MSG XPLS FPLS ,GFLS .H JTNNO WRK IWRK)
The routine DFAULT sets all input parameters to their default values, so that the user only necds to
specify those values that are desired to have different values than the defaults. For example, if the user
wishes to usc all the default values except the iteration limit (setting it instead to 300), and wishes to sup-
ply analytic gradicnts, then the calling sequence would be
CALL DFAULT (N .TYPX FSCALE ,GRADTL STEPTL JTNLIM STEPMX /PR METHOD ,
GRDFLG HESFLG NDIGIT MSG)
ITNLIM =300
GRDFLG =1
CALL TENSOR(NR N X FCN GRD HSN .TYPX FSCALE GRADTL STEPTL ITNLIM STEPMX,
IPR METHOD GRDFLG HESFLG NDIGIT MSG XPLS ,FPLS ,GPLS .H I[TNNO WEKK [WRK)
The name of the routine for cvaluating analytic gradients would be given where the parameter GRD s

shown, and this routine would be supplicd by the user. In addition, the values of NR (the row dimension

of user’s matrix that will contain the Hessian), N and X would be supplied by the usecr, and the user
would provide a routine to evaluate the objective function f (x) and supply its name in FCN. WRK and
IWRK arc an NR x8 double precision array and an NR element integer vector, respectively, that are used
as work arrays by the package. These arrays must be declared in the user’s calling program, but may be

given different numes than WRK and TWRK. .

If the user wishes to use all the default values of the parameters and evaluate derivatives by finite
differences, then there is a simpler way to cail the package. It is
CALL TENSRD (NR N X FCN MSC- XPLS FPLS ,GPLS \H JTNNO WRK [IWRK)
(TENSRD stunds for Tensor Default). TENSRD simply calls DFAULT followed by TENSOR . The user
must stll supply values of NR, N, X, the routine to cvaluate f (x) and its name in FCN, and the work

arrays WRK and /WRK.

5. Parameters and Default Values

In this section we describe the parameters for the software package. In the parameter list, the sym-
bol =, « or «— follows each parameter. These symbols specify that the parameter is an input, output
and input-output parameter, respectively. Most of the input parameters do not have to be supplicd by the
uscr (sce Sec. 4 and below): if they arc not specified, the code gives them the default value that is

specitied below.

NR— : A positive integer specifying the row dimension of the matrices H and WRK in the user’s calling
program. (F is uscd to store the Hessian matrix, WRK is uscd for workspace.) VR must be greater than
or cqual to M. This provision allows the uscr to solve scveral problems with different values of vV while

using the same user storage. AR <V, the software will sct NR =N and prnint a warming message.

N— A positive integer specifying the number of variables in the objective function. The valuc of NV
must be less than or equal to the valuc of NR . If N <0, the program will abort. If ¥=1, the program will

print a waming message, unless MSG is sct to 0.

X—> : An N -vector containing the initic] approximation to the solution x. .

FCN— : The nume of a user supplied subroutine that returns in F the value of the objective function
£ (x) at the current point X . FCN must be declared EXTERNAL in the user’s calling program and must

contorm to the usage
CALL FCN(N.X,F),

where N is the dimension of the problem, X is the current point, and F is the function vatue at the current

peint. FCN must not alter the values of N and X.

GRD— (Optional) : The name of a user supplied subroutine that returns in G the value of the gradient
V£ (x) at the current point X . GRD must be declared EXTERNAL in the user's calling program and must

conform to the usage
CALL GRD(N,X,G),

where N is the dimension of the problem, X is the curment point, and G is the gradient at the current

point. GRD must not alter the values of ¥V and X .

HSN— (Optional) : The name of a user supplied subroutine that returns in A the value of the Hessian
V3£ (x) at the current point X . HSN must be declared EXTERNAL in the user’s calling program and must

conform to the usage
CALL HSN(NR,N X, H),

where VR s the row dimension of H in the users program, N is the dimension of the problem, X is the

current point, and A is the Hessian at the current point. HSN must not alter the values of NR N, or X.

TYPX— (Optional) : An N-vector containing the scaling vector. The default value is TVPX =(1,1, ., 1) If
the user supplics valuer for TYPX , then TYPX [/] should be the absolute value of the estimated magnitude
of x, at the solutinn and/or during the z~lution process. Fo- example, if it is anticipated that the range of
values for the iterates will be

xpe [=1010,10'7]

-10-

x2€ [-10%, 10%)

x3e [-6x107%,9x1079]
then an appropriate choice would be TYPX = [10'9, 103, 7x107%]. In cases like this where the magni-
tudes of the components of X differ substantially, it may be necessary to supply scaling information in
order for th - software to be successful and efficient. If a negative valuc is specified for TYPX /], its

absolute valuc is used, while if O is specified, 1 is used.

FSCALE— (Optional) : A positive real number estimating the magnitude of f (x) near the solution x. .
FSCALE is used in the gradient stopping condition given below. The default value is FSCALE =1. It may
be helpful to specify FSCALE when the units of f (x) cause it always to be many orders of magnitude
different from 1. If £ (xo) is much greater than f (x«), FSCALE should approximate f (x.), not f (xo). If a

negative value is specified for FSCALE , its absolute value is used, while if O is specified, 1 is used.

GRADTL— (Optional) : A positive real number giving the tolerance at which the scaled gradient is con-
sidered close enough to zero to terminate the algorithm. The scaled gradicent is a measure of the relative

change in f (x) in the direction x;. The gradient stopping test used in the software is

|Vf(x)i - Imax{ |x; |, TYPX[/]}
mlax{ max [1f T, FSCALE] }SGRADTL .

DFAULT rctumns the value GRADTL = machcpsm. (macheps is described in Scction 6.) If a negative

valuc is specified for GRADTL , the default is used.

STEPTL— (Optional) : A positive rcal number containing the tolerance at which the scaled step length

is considered close cnough to zero to terminate the algorithm. The test used in the soltware is

) P (xe)i = (x|
"‘?”‘{ max (TG0 T, TYPXTT]] }S STEPTL

where x. and x, arc the new and old iteratives, respectively. If the value of STEPTL is too large, the
softwarc may terminate prematurcly. DFAULT retums the value macheps®3. If a ncgative value is

specificd for STEPTL | the default is used.

-11-

ITNLIM— (Optional) : A positive integer specifying the maximum number of iterations to be performed
before the program is terminated. DFAULT retumns the value 100. If a nonpositive value is specified for

ITNLIM , the default is used.

STEPMX— (Optional) : A positive real number containing the maximum scaled step size allowed in

each iteration. DFAULT retums the value
STEPMX = max{ | |xql |- 103.103%}

where xq is the initial approximation provided by the user. STEPMX is used to prevent steps that would
cause the optimization function to overflow, to prevent the algorithm from lcaving the area of interest in
parameter space, or to detect divergence in the algorithm. STEPMX should be chosen small cnough to
prevent the first two of these occurrences but should be larger than any anticipated “"reasonable” step. The
algorithm will halt and provide a diagnostic if it attempts to exceed STEPMX on five successive itera-

tions. If a nonpositive value is specified for STEPMX , the default is used.

IPR— (Optional) : A positive integer containing the number of the output unit. DFAULT retums the

value 6 which is the standard FORTRAN output unit.

METHOD- (Optional) : An integer flag designating which method to use.
METHOD =0 : Use the standard (quadratic model based) mcthod.
METHOD =1 : Use the tensor method.

DFAULT retumns the value 1. If a value other thun O or 1 is specified for METHOD , 1 is used.

GRDFLG— (Optional) : An intcger flag specifying whether a routine to calculate the analytic gradient is
provided by the uscr.
GRDFLG =0 : No analytic gradicnt supplicd by uscr.
GRDFLG =1 : Analytic gradicnt supplicd by uscr (will be checked against finite difference gra-
dicnt).
GRDFLG =2 : Analytic gradicnt supplicd by uscr (will not be checked against finite difference

gradicnt).

-12-

When GRDFLG = 0, the gradient values are computed by finite differences. When GRDFLG = 1 or 2,
the name of the uscr supplied routine that evaluates V£ (x) must be supplied in GRD. When GRDFLG =
1, the program compares the value of the user’s analytic gradient routine at xo with a finite difference
estimate, and aborts the program if the relative difference between any two components is greater than

0.01. DFAULT retums the value 0. If a value other than 0, 1, or 2 is specified for GRDFLG , 0 is used.

HESFLG— (Optional) : An integer flag specifying whether a routine to calculate the analytic Hessian is
provided by the user.
HESFLG = 0: No analytic Hessian supplied by user.
HESFLG = 1 : Analytic Hessian supplicd by user (will be checked against finite difference Hes-
sian).
HESFLG =2 : Analytic Hessian supplied by user (will not be checked against finite difference
Hessian).
When HESFLG = 0, the Hessian values are computed by finite differences. When HESFLG =1 or 2, the
name of the user supplied routine that evaluates V2f (x) must be supplied in HSN. When HESFLG = 1,
the program compares the value of the user’s analytic Hessian routine at xq with a finite difference esti-
mate, and aborts the program if the relative difference between any two components is greater than 0.01.

DFAULT rewurns the value 0. If a value other than 0, 1, or 2 is specified for HESFLG, 0 is used.

NDIGIT— (Optional) : An integer which estimates the number of accurate digits in the objective func-
tion f (x). DFAULT retums the value —log jo(macheps). If a nonpositive value is specified, the default is

uscd.

MSG«— (Optional) : An integer which upon entering the software package specifics the type of printed
output to be produced, and which upon exiting the softwarc package specifies the termination condition.
The meaning of MSG upon input is :

0 : No printed output will be produced.

1 : Print out the values of x, f(x), Vf (x) at the initial and final itcrates, the wotal number of itera-

tions that werce taken, and the reason the algorithm was terminated.

13-

2 : Print out the values of x, f (x), Vf (x) at every iteration, the total number of iterations that
were taken, and the rcason the algorithm was terminated.
DFAULT retumns the value 1. If a value other than O, 1, or 2 is specified for MSG, 1 is uscd.
The meaning of MSG upon exiting the software package is :

-1: The norm of the gradient at the final iterate was less than GRADTL .

-2 : The length of the last step was less than STEPTL .

-3 . The last iteration failed to locate a lower point.

-4 : The iteration limit has been exceeded.

-5 . Five consecutive steps of length STEPMX have been taken.

-20 : Nonpositive value of N was input; program aborted.

-21 : Possible coding error in analytic gradient, because analytic gradient at xp is not close
enough to finite difference approximation; program aborted. (This check can be overrid-
den by setting GRDFLG =2.)

-22 : Possible coding error in analytic Hessian. because analytic Hessian at xg is not close
enough to finite difference approximation; program aborted. (This check can be overrid-

den by setting HESFLG =12.)

XPLS« : An N-vector containing the final iterate, which is the best approximation found to the minim-

izer of f (x).
FPLS« : A rcal number that contains the function value at the final iterate XPLS .
GPLS« : An N-vcctor containing the gradient value at the final itcratc XPLS .

He : An array that is uscd to storc thc Hessian matrix V2f (x) at cach iteration. The user needs to
declare this array to have dimension NRxNC, where NR is a paramcter described at the start of this scc-
tion and obcys NR 2N, and NC is any intcger obeying NC 2N . The Hessian matrix is stored in the first ¥

rows and columns of H. Upon cxiting the software, H contains the Hessian value at the final iterate

XPLS.

«14.

ITNNO« : A positive integer containing the total number of itcrations that were taken.

WRK- : The name of an NR x8 double precision array used as workspace by the software package. It

must be declared in the user’s calling program with these dimensions.

IWRK- : The name of an integer array used as workspace by the software package. It must be declarcd

in the user’s calling program and have dimension N/, where N/ is any integer obeying NI 2N .

6. Implementation Details

The software package is coded in FORTRAN 77 using double precision. The uscr must declare all

parameters that arc real variables to be double precision.

The software calculates the value of the machine epsilon, defined to be the smallest positive real
number macheps for which (1 + macheps) > 1 in double precision on that computer, in the subroutine
MCHEPS . On some computers, the returned value may be incorrect due to compiler optimizations. The
user may wish to check the computer value of macheps and, if it is incorrect, replace the code in the sub-
routine MCHEPS with the statement

EPS = correct value of machine epsilon.

Several components of the software package are taken from the UNCMIN unconstrained minimiza-
tion package of Schnabel, Koontz and Weiss [1985]. These routines are: FORSLV and BAKSLYV (for-
ward and backward triangular solve), FSTOFD and SNDOFD (first and sccond order finite difference
derivatives), GRDCHK and HESCHK (compare the finite difference gradicnt and Hessian to analytic gra-
dient and Hessian, respectively), LNSRCH (line scarch), OPTSTP (check stopping condition), and most

of OPTCHK (check input paramecters).

-15.-

7. Summary of Test Results

We have tested this software on the set of unconstrained optimization problems in Mor¢, Garbow
and Hillstrom [1981]. All of these problems except the Powell singular problem have V2f (x+) nonsingu-
lar. We created two sets of singular test problems V2f (x») having rank n-1 and n-2 respectively, by
modifying the nonsingular test problems of Moré, Garbow and Hillstrom [1981] as described in Schnabel

and Chow [1989]. The dimension of these problems ranges from 2 to 30.

The test results for the problems solved successfully by both methods arc summarized in Table 7.1
below. The second and third columns are computed using the total of all the iterations, or all the function
evaluations, requircd by each method to solve all these problems. This is a reflection of the cost of the
entire test sct. Table 7.1 shows that, on the average, the tensor method required about 28% to 34% fewer
iterations, and about 22% to 36% fewer function evaluations, to solve these problems. The number of
itcrations would be an accurate indication of the time required by the code to solve a problem where the
number of variables # is not too small and function evaluation is not too expensive, since in this case the
cost per iteration of each method is nearly identical and is dominated by the factorization of an nxn sym-
metric matrix at each iteration. The number of function evaluations, which includes finite difference
derivatives, would be an accurate indication of the time required by the code to solve a problem where
function evaluation is expensive, as it is on many practical problems. Table 7.1 also shows that the
efficicncy of the tensor method was rarely worse than the standard method, and usually better, on these

test problems.

Table 7.1 -- Comparison of Tensor and Standard Methods

Test Sct I[II:TSTI'ae:ngrr d FEHE%;%I:;SST;?;‘?: 3 Tcgsor Better | Tensor Worse | Tie
Nonsingular 0.714 0.779 32 4 10
Singular, rank n-1 0.658 0.638 39 2 10
Singular, rank n-2 0.674 0.685 31 5 17

.16~

In addition, Table 7.2 shows that the tensor method solved 18 problems that the standard method
did not solve, while the standard method solved 3 problems that the tensor method did not solve, with the

tensor method :.aving a greater advantage on the singular problems than on the nonsingular problems.

These results indicate that the tensor method is likely to be more efficient than the standard method
in solving nonsingular and singular unconstrained optimization problems, and that it may solve a wider

range of problems. They also indicate that for any particular problem, it may be advantageous to have
both methods available.

Table 7.2 --Number of Test Problems Solved by One Method Only

Test Sct Solved by Tensor Method Only | Solved by Standard Mcthod Only
Nonsingular 6 1
Singular, rank n-1 5 0
Singular, rank n-2 7 2

.17-

8. References

T. Chow [1989], "Derivative and secant tensor methods for unconstrained optimization”, Ph.D. Thesis,
Department of Computer Science, University of Colorado at Boulder.

J. E. Dennis Ir. and R. B. Schnabel {1983], Numerical Methods for Nonlinear Equations and Uncon-
strained Optimization, Prentice-Hall, Englewood Cliffs, New Jersey.

J. J. Moré B. S. Garbow, and K. E. Hillstrom [1981], "Testing unconstrained optimization software”,
ACM Transactions on Mathematical Software 7, pp. 17-41.

R. B. Schnabel and T. Chow [1989], "Tensor methods for unconstrained optimization using second
derivatives", Technical Report CU-CS-439-89, Department of Computer Science, University of Colorado
at Boulder, to appear in S/AM Journal on Optimization .

R. B. Schnabel and E. Eskow [1990], "A new modified Cholesky factorization", SIAM Journal on
Scientific and Statistical Computing 11, pp. 1136-1158.

R. B. Schnabel, J. E. Koontz, and B. E. Weiss [1985], "A modular system of algorithms of unconstrained
minimization", ACM Transactions on Mathematical Software 11, pp. 419-440.

MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES
form Approved
REPORT DOCUMENTATION PAGE OMBS No. 0704-0188

A,0HC TROQMTING SUIGEN T Ty JhectSn Tt ArSrmatan (3 HUMated 02 Iverage ' ~our Jer ‘2porse. ﬂ(lhdlﬂq e Lime 'Or reviewing 1NLrUCTIONS, searcming exnting 3412 sources.
jatherng Jrd Mantaning 1he 1303 needed. Ind COMOIRtInG ing reviewing the Sliecton Of 1ntIrmaion Seng :omments ¢ arqiNG this Durden esUmate or any JTNEr 3s0ect of Ny
SoHecuen Ot NOEMAtoN. ACUAING SUGGEIIIaNs fOr feAUCING 1Ny Durgen (0 Nashington meadguarers Services. Directarate for (nfarmation Qoerations ang feports. 1215 ,etterson
Davis rgrway. Suite ' 203 Arhegtan. 3 12292-4302. ang 13 the Qttice £ Management ana Judge?. Paperwark Reduction Project (0704-0148), Wasnington, 2C 13503,

1. AGENCY USE ONLY (Leave diank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

90/12/31
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Software Package for Unconstrained Optimization
Using Tensor Methods

DAAC 03-88-k~ 0686

6. AUTHOR(S)
Ta-Tung Chow, Elizabeth Eskow, and Robert B. Schnabel

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
, REPORT NUMBER
Office of Contracts and Grants

Armory 206, Campus Box B-19
University of Colorado at Boulder
Boulder, CO 80309

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER
U. S. Army Research Office

P. 0. Box 12211 .
Research Triangle Park, NC 27709-2211 f)[_’,b %928 9-mA

11. SUPPLEMENTARY NOTES
The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so desi&ted by other documentation.
12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited. .

13. ABSTRACT (Maximum 200 words)

This paper describes a software package for finding the unconstrained minimizer of a nonlincar function
of n variables. The package is intended for problems where a is not too large, say n <100, so that the cost
of storing one nxn matrix, and factoring it at each iteration, is acceptable. The software allows the user to
choose between a recently developed “"tensor method” for unconstrained optimization, and an analogous
standard method based upon a quadratic model. The tensor method bases each iteration upon a specially
constructed fourth order model of the objective function that is not significantly more cxpensive to form,
store, or solve than the standard quadratic model. In our experience, the tensor method requires
significantly fewer iterations and function evaluations to solve most unconstraincd optimization problems
than standard methods based upon quadratic models, and also solves a somewhat wider range of prob-
lems. For these reasons, it may be a useful addition to numerical software libraries.

14, SUBJECT TERMS 15. NUMBER OF PAGES

Unconstrained optimization, tensor methods, software package 21
16. PRICE COOE

17. SECURITY CLASSIFICATION |[18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION |20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-3500 Standard Form 298 (Rev 2-89)

Pre<crioed Dy ANSI Sta 39-'8
298-102

